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Abstract. For a finite Lie algebraGN of rankN , the Weyl orbitsW(3++) of strictly dominant
weights3++ contain dimW(GN) number of weights, where dimW(GN) is the dimension of its
Weyl groupW(GN). For anyW(3++), there is a very peculiar subset%(3++) for which we always
have

dim%(3++) = dimW(GN)/ dimW(AN−1).

For any dominant weight3+, the elements of%(3+) are calledpermutation weights.
It is shown that there is a one-to-one correspondence between the elements of%(3++) and

%(ρ) whereρ is the Weyl vector ofGN . The concept of the signature factor which enters the Weyl
character formula can be relaxed in such a way that signatures are preserved under this one-to-
one correspondence in the sense that corresponding permutation weights have the same signature.
Once the permutation weights and their signatures are specified for a dominant3+, calculation
of the character ChR(3+) for the irreducible representationR(3+) will then be provided byAN
multiplicity rules governing the generalized Schur functions. The main idea is again to express
everything in terms of the so-calledfundamental weightswith which we obtain a quite relevant
specialization in applications of the Weyl character formula. To provide simplifications in practical
calculations, a reduction formula governing the classical Schur functions is also given. As the most
suitable example,E6, which requires a sum over 51 840 Weyl group elements, is studied explicitly.
This will be instructive also for an explicit application ofA5 multiplicity rules.

As a result, it will be seen that the Weyl or Weyl–Kac character formulae find explicit
applications no matter how large the rank of the underlying algebra.

1. Introduction

It is well known that summations over Weyl groups of Lie algebras enter many areas of
physics as well as mathematics. They are at the heart of all character calculations for finite [1]
and also affine [2] Lie algebras and hence are of great importance in calculations of weight
multiplicities [3] or in decompositions [4] of tensor products of irreducible representations. In
high-energy physics, it is known that calculations of fusion coefficients [5] orS-matrices which
appear in modular transformations [6] of affine characters are directly related to summations
over Weyl groups. This, however, is not an easy task, except for a few cases which correspond
to some Lie algebras of low rank. Let us emphasize, for instance, that the summations are
over 51 840, 2 903 040 and 696 729 600 Weyl group elements forE6, E7 andE8 Lie algebras,
respectively. It is therefore worthwhile to study the problem more closely.

In a previous work [7] we showed that in applications of the Weyl character formula for
AN Lie algebras the sums over Weyl groups can be represented by permutations. This is
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in essence in line with the fact thatAN Weyl groups are already the permutation groups of
(N + 1) objects. It is interesting to note, however, that this can be seen only when one uses
some properly chosen set of weights which we callfundamental weights. We also showed that
the signatures of the Weyl reflections can then be given precisely. One could therefore expect
there to be a way of extending this procedure to any other finite Lie algebraGN in view of the
fact that it always has anAN−1 subalgebra.

For this, let us recall that for any dominant weight3+ of GN one has a strictly dominant
weight3++ ≡ 3+ + ρ, whereρ is the Weyl vector ofGN . The character ChR(3+) of the
corresponding irreducible representationR(3+) is then given by

ChR(3+) = A(3++)

A(ρ)
(1.1)

where

A(µ) ≡
∑
ω

ε(ω) eω(µ) (1.2)

can be defined for any weightµ. The sum here is over the Weyl groupW(GN) andε(ω) is the
signature of the Weyl reflectionω. The main emphasis now is on the fact that, for any strictly
positive dominant weight3++, the number of elements of Weyl orbitW(3++) is always equal
to the dimension of the corresponding Weyl group. Hence this allows us to re-write (1.2) in
the form

A(3++) ≡
∑

µ∈W(3++)

ε(µ)eµ (1.3)

whereW(3++) is the corresponding Weyl orbit. One must immediately note here that the
concept of signature encountered in (1.2) is conveniently relaxed in (1.3) in such a way that
we introduce a signatureε(µ) for each and every weightµ within the Weyl orbitW(3++). It
will be seen in what follows that (1.3) is a quite relevant form of (1.2) if one aims to use it in
the Weyl character formula (1.1). To this end, the concept ofpermutation weightis of central
importance.

2. Permutation weights

It is known that the branching rulesGN → AN−1 give us irreducibleAN−1 representations
which participate in the decomposition of an irreducible representation ofGN . Instead, here
we want to do the same for Weyl orbits rather than representations. For this, the following
definition seems to be useful.

A Weyl orbitW(3+) always includes a subset%(3+) of weights having the form

N−1∑
i=1

ki λi − k λN ki ∈ Z+ k ∈ Z (2.1)

whereZ (Z+) is the set of integers (positive integers). The elements of%(3+) are called the
permutation weightsof 3+.

TheλI andαI (I = 1, 2, . . . , N) are respectively the fundamental dominant weights and
the simple roots ofGN . For details of Lie algebra technology we refer to the excellent book of
Humphreys [8]. As will be seen from the permutational lemma given in our previous work [9],
the Weyl orbits ofAN Lie algebras are stable under permutations and hence this allows us to
determine the complete weight structure of anAN Weyl orbit. The permutation weights will
give us the same possibility, but for any finite Lie algebraGN other thanAN Lie algebras. We
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will therefore show now an explicit way of obtaining all permutation weights of a Weyl orbit
W(3+) of GN .

Let us first emphasize by definition that the sum of two permutation weights is again a
permutation weight. Let%(λ) and%(λ′) be the sets of permutation weights forλ andλ′. It is
then clear that

%(λ + λ′) ⊂ %(λ) ∪ %(λ′) (2.2)

and for any elementµ ∈ %(λ) ∪ %(λ′) one can also stateµ ∈ %(λ + λ′) on condition that

(µ,µ) = (λ + λ′, λ + λ′) (2.3)

where(·, ·) is the scalar product which can be introduced on the weight lattice ofGN . It is
therefore sufficient to know the%(λI ) (I = 1, 2, . . . , N) in order to obtain the set%(3+) of
permutation weights for any dominant weight3+ which is known to be expressed by

3+ =
N∑
I=1

kIλI kI ∈ Z+.

We find it convenient here to exemplify our work in the Lie algebra ofE6 with the following
Coxeter–Dynkin diagram:

6

1 2 3 4 5

The permutation weight subsets of its fundamental Weyl orbits will then be given by

%(λ1) ≡ {λ1 , λ1− λ6 , λ4 − λ6}
%(λ2) ≡ {λ2 , λ2 − 2λ6 , λ3 + λ5− 2λ6 , λ1 + λ4 − λ6 , λ1 + λ4 − 2λ6 , 2λ1− λ6}
%(λ3) ≡ {λ3 , λ1 + λ3 + λ5− 3λ6 , λ1 + λ3 + λ5− 2λ6 , λ2 + 2λ5− 2λ6 ,

λ2 + λ4 − 3λ6 , λ2 + λ4 − λ6 , λ3− 3λ6 , 2λ3− 3λ6 , 2λ1 + λ4 − 2λ6}
%(λ4) ≡ {λ4 , λ4 − 2λ6 , λ1 + λ3− 2λ6 , λ2 + λ5− λ6 , λ2 + λ5− 2λ6 , 2λ5− λ6}
%(λ5) ≡ {λ5 , λ2 − λ6 , λ5− λ6}
%(λ6) ≡ {λ6 , −λ6 , λ1 + λ5− λ6 , λ3− λ6 , λ3− 2λ6}.

(2.4)

In the notation of(k1, k2, k3, k4, k5, k6) for
∑6

I=1 kI λI , half of the 72 elements of%(ρ) can
now be chosen, by direct use of (2.3), from the elements of

∑6
I=1 %(λI ) as follows:

ρ(1) = (1, 1, 1, 1, 1, 1) ρ(13) = (3, 2, 2, 1, 2,−6) ρ(25) = (3, 1, 3, 2, 1,−8)
ρ(2) = (1, 1, 2, 1, 1,−1) ρ(14) = (2, 1, 2, 2, 3,−6) ρ(26) = (6, 1, 1, 2, 1,−7)
ρ(3) = (1, 2, 1, 2, 1,−2) ρ(15) = (1, 3, 1, 3, 1,−6) ρ(27) = (1, 2, 1, 1, 6,−7)
ρ(4) = (1, 3, 1, 1, 2,−3) ρ(16) = (4, 2, 1, 1, 3,−6) ρ(28) = (2, 2, 2, 1, 4,−8)
ρ(5) = (2, 1, 1, 3, 1,−3) ρ(17) = (3, 1, 1, 2, 4,−6) ρ(29) = (4, 1, 2, 2, 2,−8)
ρ(6) = (2, 2, 1, 2, 2,−4) ρ(18) = (4, 1, 3, 1, 1,−7) ρ(30) = (2, 1, 4, 1, 2,−9)
ρ(7) = (1, 4, 1, 1, 1,−4) ρ(19) = (1, 1, 3, 1, 4,−7) ρ(31) = (7, 1, 1, 1, 1,−7)
ρ(8) = (1, 1, 1, 4, 1,−4) ρ(20) = (2, 2, 2, 2, 2,−7) ρ(32) = (1, 1, 1, 1, 7,−7)
ρ(9) = (3, 1, 2, 1, 3,−5) ρ(21) = (5, 1, 2, 1, 2,−7) ρ(33) = (1, 3, 1, 1, 5,−8)
ρ(10) = (2, 3, 1, 2, 1,−5) ρ(22) = (2, 1, 2, 1, 5,−7) ρ(34) = (5, 1, 1, 3, 1,−8)
ρ(11) = (1, 2, 1, 3, 2,−5) ρ(23) = (3, 2, 1, 2, 3,−7) ρ(35) = (3, 1, 3, 1, 3,−9)
ρ(12) = (4, 1, 1, 1, 4,−5) ρ(24) = (1, 2, 3, 1, 3,−8) ρ(36) = (1, 1, 5, 1, 1,−10).

(2.5)
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3. Explicit construction of Weyl orbits

It is known that the complete set of weights of a Weyl orbit is obtained from the fact that
the Weyl orbits are by definition stable under Weyl reflections. Instead, we want to construct
Weyl orbits here solely by knowing their permutation weights. As above, let theλI be the
fundamental dominant weights ofGN , and let theσi be those of itsAN−1 subalgebra.

The existence of such a subalgebra can always be shown explicitly by taking

σi = λi − niλN (3.1)

where theni are some specified rational numbers. Let us recall from our previous articles
[7, 9] that the fundamental weightsµI (I = 1, 2, . . . , N) for theAN−1 subalgebra are defined
by

σi ≡ µ1 +µ2 + · · · +µi i = 1, 2, . . . , N − 1 (3.2)

together with the condition that

µ1 +µ2 + · · · +µN ≡ 0 (3.3)

and also

(µI , λN) ≡ 0. (3.4)

The permutational lemma then states for anAN−1 dominant weight

σ + = s1µ1 + s2µ2 + · · · + sNµN s1 > s2 > · · · > sN > 0 (3.5)

that its Weyl orbitsW(σ +) are obtained as

W(σ +) = {s1µI1 + s2µI2 + · · · + sNµIN } (3.6)

by permuting the fundamental weightsµI . Note here that no two of the indicesI1, I2, . . . , IN
(= 1, 2, . . . , N) take the same value. This is also true for all permutation weights because,
for λN → 0, they turn out to beAN−1 dominant weights. We then obtain an extension of the
permutational lemma for any finite Lie algebra other than theAN Lie algebras.

An example will again be helpful here. Let us consider theE6 → A5 decomposition
which is specified by

σ1 = λ1− 1
2λ6 σ2 = λ2 − 2

2λ6 σ3 = λ3− 3
2λ6

σ4 = λ4 − 2
2λ6 σ5 = λ5− 1

2λ6

(3.7)

where theλI (I = 1, 2, . . . ,6) are theE6 fundamental dominant weights, while theσi
(i = 1, 2, . . . ,5) are those ofA5. The influence of theA5 permutational lemma for the
E6 Weyl orbits can be illustrated, in view of (2.4), in the following example:

W(λ1) = {W(σ1) + 1
2� , W(σ1)− 1

2� , W(σ4)} (3.8)

where, forA5 Weyl orbits, we know that

W(σ1) = {µI1} , W(σ4) = {µI1 +µI2 +µI3 +µI4} I1 > I2 > I3 > I4 = 1, 2, . . . ,6.

In (3.8) one keeps the notation� ≡ λ6, for which we know that(�,µI ) = 0. It is, in fact,
simply an example of thebranching rule of Weyl orbitswhich is at the heart of our definition
of permutation weights. The branching rules for the remaining fundamentalE6 Weyl orbits
W(λi) for i = 2, 3, . . . ,6 can be similarly obtained from the permutation weights given
in (2.4).

What we want to emphasize here is mainly that the 72 permutation weights ofW(ρ) of
E6 will be given by

%(ρ) = (σ (k)++ + r(k) � , σ(k)++ − r(k) �) (3.9)

where the� extension parametersr(k) are somepositiverational numbers. The 36 strictly
dominant weightsσ(k)++ and their parametersr(k) can respectively be determined from (2.5)
(k = 1, 2, . . . ,36).
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4. Applications of the Weyl formula and a lemma

Since we have in mind to perform the summations over the Weyl groups explicitly, the
decomposition (3.9) gives us the possibility forE6 of calculatingA(ρ) with the aid of (1.3).
Let us recall from [7] that for any one of theA5 dominant weights

σ ++(k) ≡ σ +(k) + ρσ

in the list (3.9), one has

A(σ ++(k) + r(k) �) = A(ρσ ) S(σ +(k)) ur(k) (4.1)

whereρσ is the Weyl vector ofA5. In the specialization

e� ≡ u eµI ≡ uI I = 1, 2, . . . ,6 (4.2)

of formal exponentials, we know thatS(σ +(k)) is a generalized Schur function [7, 10] which
can be reduced via theA5 multiplicity rules to a polynomial expression in terms of five
indeterminatesxi (i = 1, 2, . . . ,5) which are defined by

uM1 + uM2 + uM3 + uM4 + uM5 + uM6 ≡ M xM M = 1, 2, . . . . (4.3)

Note here as a result of (3.3) that six indeterminatesuI are constrained by
6∏
I=1

uI ≡ 1 (4.4)

and hence one can immediately see from definitions (4.3) that, forM > 5, all indeterminates
xM depend nonlinearly on the first five indeterminatesxi (i = 1, 2, . . . ,5). This will also give
rise to some reduction rules governing classical Schur functions [7] which are defined by

S(M λ1) ≡ SM(x1, x2, . . . , x5) M = 1, 2, . . . ,5, 6, . . . (4.5)

where theSM(x1, x2, . . . , x5)are some polynomials which can be obtained forM = 1, 2, . . . ,5
directly. ForM > 5, however, one must take into account the above-mentioned nonlinear
relations between the indeterminatesxM . Practical calculations could become complicated in
general forAN multiplicity rules. For this, we find it convenient to give some clarifying details
here. It will be seen in fact that these nonlinear relations governing the indeterminatesxM for
M > N result in the following reduction rules between the polynomialsSM(x1, x2, . . . , xN) ≡
SM(N) which correspond to the classical Schur functions as in (4.5):

SM(N) = (−1)N SM−N−1(N)−
N∑
i=1

S∗i (N) SM−i (N) M > N (4.6)

whereS∗M(N) is obtained fromSM(N) under the replacementsxi →−xi . It will be seen that
the reduction rules given in (4.6) prove extremely useful in applications ofAN multiplicity
rules, especially for higher values of the rankN .

Another important point to note here is to give a precise definition of the signatures for
the 72 permutation weights in the decomposition (3.9). The arrangement in (3.9) is in such a
way that

ε(σ ++(k) + r(k) �) ≡ +1

ε(σ ++(k)− r(k) �) ≡ −1
(4.7)

for k = 1, 2, . . . ,36. The miraculous factorization (4.1) of the Weyl formula comes out only
with the aid of such a choice.

It can thus be seen that the decomposition (3.9) of%(ρ) allows us to calculateA(ρ) but
nothing is said about any otherA(3++) which we need in the calculation of the character
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ChR(3+). For this, a lemma which assures one-to-one correspondence between the 72
elements of (3.9) and those of any other%(3++) would be of great help. In view of
condition (2.3), there is a one-to-one correspondence which maps any element of%(ρ) to
one and only one element of%(3++) in such a way that their signatures are preserved. The
generalization leads us to the following lemma.

Lemma. Let, for any dominant weight3+, %(3+) be the subset of its permutation weights
and also

%(ρ) ≡ {ρ(k)} %(3++) ≡ {3(k)} (4.8)

for any Lie algebraGN with the Weyl vectorρ. Then, in view of condition (2.3), for

k = 1, 2, . . . ,
dimW(GN)

dimW(AN−1)

andµ ∈ %(3+) there is a one-to-one correspondence4 which provides

4 : ρ(k) +µ→ 3(k) (4.9)

in such a way that

ε(4(ρ(k))) ≡ ε(ρ(k)). (4.10)

Note here that we always have

dim%(3++) > dim%(3+)

and for each and every value ofk there is one and only oneµ ∈ %(3+).

In conclusion, we can say that the decomposition (2.5) makes any explicit summation over
the 51 840 elements of theE6 Weyl group possible and hence completely solves the problem for
theE6 Lie algebra. One must add, however, that the related definitions must be made precisely
case by case for any other Lie algebra. For all the chainsBN,CN,DN , the exceptional Lie
algebrasG2, F4 and even forE7 the method presented above is tractable as we will show in a
subsequent paper. The same could also be true forE8 but again one must note that we have
dim%(ρ) = 17 280 forE8. We finally remark that a similar analysis can be presented in the
framework of theA8 subalgebra ofE8, this making the problem more tractable by reducing
the number of permutation weights down to 1920. To the knowledge of the authors, this is
quite convenient for handling any problem which requires summations over the 696 729 600
elements of theE8 Weyl group in an explicit manner, and hence it would be worth studying in
another publication.

Last but not least, let us add that all these calculations can be performed by the aid of very
simple computer programs, say, in the languageMathematica™[11].
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